Adjust Text Size:change font sizechange font sizechange font sizechange font sizechange font sizechange font size

Featured Research

Can we predict who is at risk of facing cognitive issues in PD and address them earlier? These are the questions being pursued by Dr. Goldman of the PDF Research Center at Rush University Medical Center.

Learn More

PDF Grant Programs

Are you interested in furthering Parkinson's science? View PDF's open grant programs.

Learn More


Mitochondrial acetylation and genetic models of Parkinson's disease.

PDF's targeted PubMed search provides you with access to journal articles from the last 90 days that may be pertinent to Parkinson's disease research. 

Not what you're looking for? Do you need informational publications about Parkinson's targeted for people living with Parkinson's, caregivers and family members?  Please browse PDF's educational materials and programs - which are all available electronically or in print.  Order for yourself, a loved one or in bulk for your patients or support group.

Prog Mol Biol Transl Sci 2014 ; 127:155-82

Authors: Georg Auburger, Suzana Gispert, Marina Jendrach

Parkinson's disease (PD) is frequent at old age, leading to atrophy of specific neurons and to early death. Lifespan and healthy aging of organisms depend on growth factor/nutrient signaling and on bioenergetics via mitochondria, all of which regulate downstream nuclear functions through FOXO and SIR proteins. Mammalian SIRtuins include the mitochondrial deacetylase SIRT3, and recently mitochondrial lysine acetylation (AcLys) was found to initiate mitochondrial degradation by autophagy. This mitophagy process is closely regulated by PINK1 and Parkin, two interacting proteins which relocalize to mitochondria with deficient proton gradients, and whose mutations cause autosomal recessive variants of PD. Strong generalized deacetylation of mitochondrial proteins and altered SIRT3 levels occur in rodent models of PD before the onset of toxic aggregate formation. We propose that the development of site-specific AcLys-antibodies and their characterization in patients will have medical value.

PMID: 25149217 [PubMed - as supplied by publisher]

See More

Back to PubMed Articles