Adjust Text Size:change font sizechange font sizechange font sizechange font sizechange font sizechange font size

Featured Research

Can we predict who is at risk of facing cognitive issues in PD and address them earlier? These are the questions being pursued by Dr. Goldman of the PDF Research Center at Rush University Medical Center.

Learn More

PDF Grant Programs

Are you interested in furthering Parkinson's science? View PDF's open grant programs.

Learn More


Cell-permeable parkin proteins suppress Parkinson disease-associated phenotypes in cultured cells and animals.

PDF's targeted PubMed search provides you with access to journal articles from the last 90 days that may be pertinent to Parkinson's disease research. 

Not what you're looking for? Do you need informational publications about Parkinson's targeted for people living with Parkinson's, caregivers and family members?  Please browse PDF's educational materials and programs - which are all available electronically or in print.  Order for yourself, a loved one or in bulk for your patients or support group.

PLoS One 2014 ; 9(7):e102517

Authors: Tam Duong, Jaetaek Kim, H Earl Ruley, Daewoong Jo

Parkinson's disease (PD) is a neurodegenerative disorder of complex etiology characterized by the selective loss of dopaminergic neurons, particularly in the substantia nigra. Parkin, a tightly regulated E3 ubiquitin ligase, promotes the survival of dopaminergic neurons in both PD and Parkinsonian syndromes induced by acute exposures to neurotoxic agents. The present study assessed the potential of cell-permeable parkin (CP-Parkin) as a neuroprotective agent. Cellular uptake and tissue penetration of recombinant, enzymatically active parkin was markedly enhanced by the addition of a hydrophobic macromolecule transduction domain (MTD). The resulting CP-Parkin proteins (HPM13 and PM10) suppressed dopaminergic neuronal toxicity in cells and mice exposed to 6-hydroxydopamine (6-OHDH) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These included enhanced survival and dopamine expression in cultured CATH.a and SH-SY5Y neuronal cells; and protection against MPTP-induced damage in mice, notably preservation of tyrosine hydroxylase-positive cells with enhanced dopamine expression in the striatum and midbrain, and preservation of gross motor function. These results demonstrate that CP-Parkin proteins can compensate for intrinsic limitations in the parkin response and provide a therapeutic strategy to augment parkin activity in vivo.

PMID: 25019626 [PubMed - as supplied by publisher]

See More

Back to PubMed Articles