Adjust Text Size:change font sizechange font sizechange font sizechange font sizechange font sizechange font size

Featured Research

Can we predict who is at risk of facing cognitive issues in PD and address them earlier? These are the questions being pursued by Dr. Goldman of the PDF Research Center at Rush University Medical Center.

Learn More

PDF Grant Programs

Are you interested in furthering Parkinson's science? View PDF's open grant programs.

Learn More


FBXO7 Y52C Polymorphism as a Potential Protective Factor in Parkinson's Disease.

PDF's targeted PubMed search provides you with access to journal articles from the last 90 days that may be pertinent to Parkinson's disease research. 

Not what you're looking for? Do you need informational publications about Parkinson's targeted for people living with Parkinson's, caregivers and family members?  Please browse PDF's educational materials and programs - which are all available electronically or in print.  Order for yourself, a loved one or in bulk for your patients or support group.

PLoS One 2014 ; 9(7):e101392

Authors: Chiung-Mei Chen, I-Cheng Chen, Yi-Cheng Huang, Hsueh-Fen Juan, Ying-Lin Chen, Yi-Chun Chen, Chih-Hsin Lin, Li-Ching Lee, Chi-Mei Lee, Guey-Jen Lee-Chen, Yun-Ju Lai, Yih-Ru Wu

Mutations in the F-box only protein 7 gene (FBXO7), the substrate-specifying subunit of SCF E3 ubiquitin ligase complex, cause Parkinson's disease (PD)-15 (PARK15). To identify new variants, we sequenced FBXO7 cDNA in 80 Taiwanese early onset PD patients (age at onset ?50) and only two known variants, Y52C (c.155A>G) and M115I (c.345G>A), were found. To assess the association of Y52C and M115I with the risk of PD, we conducted a case-control study in a cohort of PD and ethnically matched controls. There was a nominal difference in the Y52C G allele frequency between PD and controls (p?=?0.045). After combining data from China [1], significant difference in the Y52C G allele frequency between PD and controls (p?=?0.012) and significant association of G allele with decreased PD risk (p?=?0.017) can be demonstrated. Upon expressing EGFP-tagged Cys52 FBXO7 in cells, a significantly reduced rate of FBXO7 protein decay was observed when compared with cells expressing Tyr52 FBXO7. In silico modeling of Cys52 exhibited a more stable feature than Tyr52. In cells expressing Cys52 FBXO7, the level of TNF receptor-associated factor 2 (TRAF2) was significantly reduced. Moreover, Cys52 FBXO7 showed stronger interaction with TRAF2 and promoted TRAF2 ubiquitination, which may be responsible for the reduced TRAF2 expression in Cys52 cells. After induced differentiation, SH-SY5Y cells expressing Cys52 FBXO7 displayed increased neuronal outgrowth. We therefore hypothesize that Cys52 variant of FBXO7 may contribute to reduced PD susceptibility in Chinese.

PMID: 25029497 [PubMed - as supplied by publisher]

See More

Back to PubMed Articles