Adjust Text Size:change font sizechange font sizechange font sizechange font sizechange font sizechange font size

Featured Research

Can we predict who is at risk of facing cognitive issues in PD and address them earlier? These are the questions being pursued by Dr. Goldman of the PDF Research Center at Rush University Medical Center.

Learn More

PDF Grant Programs

Are you interested in furthering Parkinson's science? View PDF's open grant programs.

Learn More

The Small Heat Shock Protein HspB8: Role in Nervous System Physiology and Pathology.

PDF's targeted PubMed search provides you with access to journal articles from the last 90 days that may be pertinent to Parkinson's disease research. 

Not what you're looking for? Do you need informational publications about Parkinson's targeted for people living with Parkinson's, caregivers and family members?  Please browse PDF's educational materials and programs - which are all available electronically or in print.  Order for yourself, a loved one or in bulk for your patients or support group.

CNS Neurol Disord Drug Targets 2014 ; 13(5):885-95

Authors: Mattia Vicario, Stephen D Skaper, Alessandro Negro

The accumulation and aggregation of misfolded proteins can be highly cytotoxic and may underlie several human degenerative diseases characterized by neuronal inclusions such as Alzheimer's, Parkinson's, prion-like and polyglutamine repeat diseases. In this context small heat shock proteins, molecular chaperones known to be induced by cell stress, play a fundamental role by facilitating folding of nascent polypeptides, preventing aggregation of misfolded proteins and enhancing their degradation. A recently identified member of the small heat shock protein family, HspB8, is of particular interest in the field of neurological diseases since mutations in its sequence correlate with development of distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. HspB8 expression has been detected in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington disease and spinocerebellar ataxia type 3. In the latter, HspB8 appears to be involved in protecting the cell from accumulation of insoluble aggregates either by preventing aggregation or by promoting degradation of improperly folded proteins. These data propose that HspB8 may be a major player in the neuroprotective response and a promising target for the development of therapeutic strategies.

PMID: 25012617 [PubMed - as supplied by publisher]

See More

Back to PubMed Articles