Adjust Text Size:change font sizechange font sizechange font sizechange font sizechange font sizechange font size

Featured Research

Can we predict who is at risk of facing cognitive issues in PD and address them earlier? These are the questions being pursued by Dr. Goldman of the PDF Research Center at Rush University Medical Center.

Learn More

PDF Grant Programs

Are you interested in furthering Parkinson's science? View PDF's open grant programs.

Learn More


Upstream deregulation of calcium signaling in Parkinson's disease.

PDF's targeted PubMed search provides you with access to journal articles from the last 90 days that may be pertinent to Parkinson's disease research. 

Not what you're looking for? Do you need informational publications about Parkinson's targeted for people living with Parkinson's, caregivers and family members?  Please browse PDF's educational materials and programs - which are all available electronically or in print.  Order for yourself, a loved one or in bulk for your patients or support group.

Front Mol Neurosci 2014 ; 7:53

Authors: Pilar Rivero-Ríos, Patricia Gómez-Suaga, Elena Fdez, Sabine Hilfiker

Parkinson's disease (PD) is a major health problem affecting millions of people worldwide. Recent studies provide compelling evidence that altered Ca(2) (+) homeostasis may underlie disease pathomechanism and be an inherent feature of all vulnerable neurons. The downstream effects of altered Ca(2) (+) handling in the distinct subcellular organelles for proper cellular function are beginning to be elucidated. Here, we summarize the evidence that vulnerable neurons may be exposed to homeostatic Ca(2) (+) stress which may determine their selective vulnerability, and suggest how abnormal Ca(2) (+) handling in the distinct intracellular compartments may compromise neuronal health in the context of aging, environmental, and genetic stress. Gaining a better understanding of the varied effects of Ca(2) (+) dyshomeostasis may allow novel combinatorial therapeutic strategies to slow PD progression.

PMID: 24987329 [PubMed - as supplied by publisher]

See More

Back to PubMed Articles