Adjust Text Size:change font sizechange font sizechange font sizechange font sizechange font sizechange font size

Featured Research

Can we predict who is at risk of facing cognitive issues in PD and address them earlier? These are the questions being pursued by Dr. Goldman of the PDF Research Center at Rush University Medical Center.

Learn More

PDF Grant Programs

Are you interested in furthering Parkinson's science? View PDF's open grant programs.

Learn More

The neurotoxicity of iron, copper and manganese in Parkinson's and Wilson's diseases.

PDF's targeted PubMed search provides you with access to journal articles from the last 90 days that may be pertinent to Parkinson's disease research. 

Not what you're looking for? Do you need informational publications about Parkinson's targeted for people living with Parkinson's, caregivers and family members?  Please browse PDF's educational materials and programs - which are all available electronically or in print.  Order for yourself, a loved one or in bulk for your patients or support group.

J Trace Elem Med Biol 2014 Jun;

Authors: Petr Dusek, Per M Roos, Tomasz Litwin, Susanne A Schneider, Trond Peder Flaten, Jan Aaseth

Impaired cellular homeostasis of metals, particularly of Cu, Fe and Mn may trigger neurodegeneration through various mechanisms, notably induction of oxidative stress, promotion of ?-synuclein aggregation and fibril formation, activation of microglial cells leading to inflammation and impaired production of metalloproteins. In this article we review available studies concerning Fe, Cu and Mn in Parkinson's disease and Wilson's disease. In Parkinson's disease local dysregulation of iron metabolism in the substantia nigra (SN) seems to be related to neurodegeneration with an increase in SN iron concentration, accompanied by decreased SN Cu and ceruloplasmin concentrations and increased free Cu concentrations and decreased ferroxidase activity in the cerebrospinal fluid. Available data in Wilson's disease suggest that substantial increases in CNS Cu concentrations persist for a long time during chelating treatment and that local accumulation of Fe in certain brain nuclei may occur during the course of the disease. Consequences for chelating treatment strategies are discussed.

PMID: 24954801 [PubMed - as supplied by publisher]

See More

Back to PubMed Articles